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Simultaneous computation of free energies and kinetics of rare events
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We introduce a method to evaluate simultaneously the reaction rate constant and the free energy profile of a
process in a complex environment. The method employs the partial path transition interface sampling tech-
nigue we recently developed for the calculation of rate constants in diffusive systems. We illustrate the
applicability of the technique by studying a simple dimer in a repulsive fluid, and show that the free energy can
be obtained at no additional computational cost.
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I. INTRODUCTION For this reason, Chandler and co-workers developed tran-

The calculation of kinetic informatiorfe.g., rate con- Sition path samplingTPS, a method that obtains the kinet-
stanty of rare-event-dominated processes such as proteil¢s Of & complex rare event process without prior knowledge
folding, chemical reactions in solution, and crystal nucle-Of the reaction coordinate, but just using an order parameter
ation remains, in general, one of the great computationakble to distinguish the initial and final stafed. TPS gathers
challenges. Application of straightforward molecular dynam-a collection of reactive pathways connecting the initial and
ics (MD) would in principle yield all atomistic kinetic infor-  final regions by employing a random walk in trajectory space
mation. However, MD requires a sufficiently small time stepbased on the Monte Car({MC) shooting mové¢4]. Based on
to describe the elementary molecular motion, while a reacthis, we recently developed a more efficient transition inter-
tive process usually exceeds this molecular time scale bface sampling(TIS) method[5], which has shown to be a
many orders of magnitude. As a result, the calculation oforomising tool for the calculation of rate constants between
rates using MD is for most systems beyond the reach ofwo stable states in high dimensional complex systems sepa-
present computers. To enable the study of the kinetics forated by large free energy barrid. For diffusive systems
processes in which a high free energy barrier separates tivée also devised a variation of this method, called partial path
stable states, the Bennett-Chandler metfib@ writes the ~ TIS (PPTIS [7], effectively exploiting the loss of long time
rate constant as a product of two factors: the equilibriumcorrelation. In PPTIS the paths do not have to go all the way
probability to be on the barrier, and a kinetic prefactor. Theto the initial or final state, thus greatly improving efficiency.
first factor is given by the free energy difference between the TIS and PPTIS no longer use the free energy, but the
transition state region and the stable state as a function of @ossing probability function whose calculation is much less
reaction coordinate. The concept of free energy is to reduceensitive to the problem of the right reaction coordinate
the myriad degrees of freedom to a single or a set of varit5,7]. However, for the analysis of complex and diffusive
ables that are able to describe the reaction process. The nprocesses, e.g., conformational changes of biomolecules, it
merical computation of free energy profiles or landscapes hagould be useful to have, besides the crossing probabilities
proved invaluable for gaining insight in complex processesand the rate constants, also the free energy profile along or-
and many different methods have been develof@dFor  der parameters, for instance to identify metastable states and
instance, in the widely used umbrella samplitiSS) tech-  bottlenecks in the mechanism.
nique one biases the system into the low probabfbiyhigh In this article we show how to obtain the free energy
free energyregions to gain more statistif3]. Although US  landscapéogether withthe rate constants in one single simu-
gives the free energy barrier, it is not sufficient for the ratelation series using PPTIS concepts.
constant. Therefore, the second step in the Bennett-Chandler
procedure is the calculation of a dynamical correction factor
called the transmission coefficient by starting many MD tra-
jectories from the top of the barrier. Unfortunately, when the Consider a complex system which undergoes a transition
reaction coordinate fails to capture the molecular mechabetween two stable statésand B, separated by a high bar-
nism, this procedure becomes very inefficient due to thaier, but with a reasonably flat and broad plateau. Due to the
small value of the transmission coefficient. Only when theheight of the barrier the population on top will be very small,
reaction coordinate is correctly chos@mnd is therefore con- yielding exponential two-state behavior and a well defined
sidered as a “true reaction coordingtehe phase space re- rate constant. In addition, as this barrier in not sharply
gion on top of the barrier corresponds to the transition stat@eaked, but has this broad plateau, the transitions will have a
dividing surface and, hence, the transmission coefficient wilktrong diffusive character and it is therefore often referred to
have reasonable value that can be computed. as a diffusive barrier. The PPTIS method requires a set of
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A:

j A M =P(I*1].1,). Starting withP}=P;=1, we can iteratively de-

Am
—\ termine(P/,P}) for j=2,...,n. The one-hopping probabili-

ties are calculated employing the shooting algorifidri Be-
/& cause of the memory loss assumption, the PPTIS expression

F(A)

essentially transforms the rate equation into a Markovian
hopping sequence. Yet, if the dynamics is diffusive and the
interfaces are sufficient far apart, the recursive expreg&ion
2 is an excellent approximatidif]. A similar method to PPTIS
is the milestoningmethod of Faradjian and ElbéB]. The
F|_G. 1. lllustration of the conditional crossing probability two methods are very similar, but differ on two crucial
P(rlnH) for a certain configuration of interfaces,Aj,\;, and\y,  points. The milestoning method assumes a complete loss of
along a free energy barrier. The conditigh restricts the set of memory at each interface. Hence, at each interface the sys-
phase points to those that cross interfacen one time steiinthe  tem can hop either to the right or to the left with a certain
limit dt— 0 this corresponds to a collection_of phase points on theprobability and these probabilities do not depend on the his-
surface\;, but with a weight proportional ta) and its backward tory of the path. PPTIS takes a stronger history dependence
trajectory should cross; before);. In this picture only the black into account. At each interface memory effects may persist
solid circles satisfy this condition. The forward evolution is associ-pyt not much longer than the time needed to travel from one
ated with(} | and measures whether interfaxeis crossed before interface to the other. Recent PPTIS calculations on crystal
Am (as in the upper pajtor not(as in the lower one The fraction  pycleation have shown that this stronger history dependence
that crosses, before, yields P(y|}). is probably important for realistic systerf@|. On the other
hand, the milestoning approach puts more effort into describ-
n+1 nonintersecting multidimensional interfad€s1,...,n} ing the time evolution on the barrier by using time dependent
described by an order parameldK) function of the system hopping probabilities. These are required if one wants to
phase poink, i.e., of all positions and velocities. This order study, for instance, the decay of a distribution that is initially
parameter should be able to describe the stable states, beigt of equilibrium, or the diffusion behavior on the barrier.
does not have to correspond to the true reaction coordinafBhis time aspect introduces another history dependgice
or, equivalently, none of the surfaces have to be close to thehich is absent in PPTIS where the final crossing probability

true transition dividing surface. is a quantity independent of time. This is justified by the fact
We choose\;, i=0,...,n, such that\;_;<\;, and that the that PPTIS always assumes that the barrier is sparsely popu-
boundaries of stated and B are described by, and\,, lated. Hence, the time that the system spends on the barrier

respectively. Now consider a deterministic Hamiltonian tra-can be long from a computational perspective, but is still
jectory x, of arbitrary length, wherg, is the complete phase negligible compared to the expected time the system needs to
space vector at a time We define the conditional crossing enter the barrier plateau region from one of the stable states.
probability P(! |!) as the probability for a trajectory, to ~ In principle, this condition should always be satisfied for a
reach interfacé beforem under the condition that it crosses System that shows exponential decay and, hence, has a well
att=0 interfacei, while coming directly from interfac¢ in ~ defined rate, but, of course, systems that do not obey these
the past. Directly means without crossing interfa@mother ~ conditions can still be interesting to study. To summarize,
time (see Fig. 1 These probabilitie®(! |!) are defined on Poth methods are very similar, but each one is more accurate
any set of four interfaces. Of special interest are the so-callet One of the points described above. However, the two as-
long distance crossing probabilitieB; = P(f)|é) and P’ pects dp not exclqde egch other and could easily be merged
=P(°|"-1). The forward and backward rate constants ofahe "€ @ Single algorithm if needed. . .
to B transition can be written as In ad(_j|_t|0_n to the rate constant, it is also possible to obtain
the equilibrium free energy profiles along For that we
kag=TfaPp, kga=fgPn, (1)  need to calculate the probabiliB(\) to find the system at a

ertain value of\. In principle, if we perform path sampling
tween two interfaces, and allow the path to be completely
ee, but stop integrating when an interface is hit, we essen-
Ogi]ally perform umbrella sampling between the interfaces us-
ing hybrid MC method$10]. In that case, simply measuring
the probability along the paths to be at a valuexofind

where we assumed that once the system has switched to t
other state, the chance of recrossing has vanished. The faﬁ‘
torsf, andfg are the fluxes out oA andB, respectively, and
can be calculated accurately by counting the frequency
leavingA andB using straightforward MD. The other factors
| - ) ) ) )
Pn andpP, can be calculated in a TIS S|mula_t|0n. However, in joining all histograms would suffice to obtain the entire free
case there is memory loss between the interfaces, we ¢ ergy BF(\)=—InP(\). The PPTIS ensembles have a
approximate the long distance crossing probabilities by thestrong resemblance to .US where the interfaces act as hard
recursive relations window boundaries. However, the PPTIS method introduces

. - P ~ PP, a bias, by restricting all paths in the ensemble to cross the
Pl=—""—, Pi==--—, (2 middle interface. Tha, path ensemble in the PPTIS formal-
Pi-1* Pj-1Pj-1 Pi-1* Pj-1Pj-1 : ;

ism consists of all possible paths that start and end at either
in which the one-interface-crossing probabilities are defined;_, or \;;; and have at least one crossing with Similar to
as pr=P( 7|1, p7=P(1|.1), pr=P(3].)), and pf  TPS[4], we consider a path as a time-discretized sequence of
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tion. The subscript denotes a conditional ensemble average
and is defined agA(x)), = [dx AX)w(X)p(X)/ [dX w(X)p(X).
The term(é()x(x)—)x’))wi_l can be calculated by histogram-
ming all time slices of the paths generated by the PPTIS
algorithm in the interfacé-1 ensemble. SimilarlyS(\(x)
=\')lpy, can be obtained by histogramming the loop points
of the trajectories in the ensemble of interfac&he remain-
ing terms are computed by matching different histograms

FIG. 2. lllustration ofloop and boundary points. The open using scaling factors obtained from the overlapping regions
circles denote boundary points witi(x)=1, time slices that hit a between two windows. These scaling factors are here defined
boundary in one time direction and reachin the opposite time ass =(w;(x))/{w;_1(x)) and follow, using Egs(3) and (4),
direction. The loop point$full circles) with I;(x)=1 meet first the  from
middle interface in both directions. For both loop and boundary
pointsw;(x)=1. The dashed lines are paths that do not belong to the (6N(X) = N)bi_py,
ensemble as they do not cross Hence, the corresponding time S= (6(0\¥) =\")b), (6)
slices(crossepare not part of the subset of phase points counted in W
the \; ensemblethus w;(x)=0], but are loop points of the neigh- for any\’,\;_; <\’ <\;. Hence, one can integrate overto
boring interfaces. obtain the most accurate value ®f

Using these scaling factot6) and Eq.(5) one can derive

phase points, called time slices. The collection of all timethe following relation for the relative probability of the order
slices of these paths is a subset of the phase space poimtarameter values and b with \_;<a<\; and \;<b
confined between;_; and\;;; because we are missing the <\
points around the outer interfaces, as shown in Fig. 2. We 1
can correct for this by comparing neighboring interface en- P@ S (6AX) =)y +(6AX) - a)ly,
sembles. For this purpose, it is convenient to categorize the  P(b) ~ (S(A(X) = b))y, + Ss1({SNX) = D) lis )y .
time slices into thdoop type andboundarytype of phase ' i
points as illustrated in Fig. 2. We defird”(x) to be 1 Hence, when all scaling factossare known the total histo-
if the forward (backward deterministic trajectory starting 9ramP(\) can be computed by joining all probabilities from
from phase space p0|m meets\; before )\] and 0 other- Eqg. (7) Note that contrary to the rate calculation, the ob-

wise. We can now define the loop and boundary characterigained free energy profile does not depend on the Markovian
tic functions as li(X):hifi—l(x)hifi+1(X)hibi—1(X)hbi+1(X) assumption introduced by PPTIS. Hence, thisf result i_s al-
and bi(x):hif—l,i(x)hitfi—l(x)+hib—1',i(x)hif,i—’1(x)+hif:r1,i(x)hi,,i+1(x) ways exact, even when the memory loss requirement is not
+hP,, (0 ,,(x). Again, these functions are either one or COMPpletely obeyed.

zero depending on whethribelongs to its loop or boundary

category. Similarly, the complete set of time slices in the I. NUMERICAL RESULTS

PPTIS ensemble can be characterizednakiyx) =I;(x) +b;(x).

This function is one, when the phase belongs to a path in thgIr
PPTIS\; ensemble. Otherwise it is zero. Asandl; vanish
whenevenw, is zero,

We test the validity of the method on the dimer system
eady studied with TPS and TIS techniqués7,11]. We
considerN=100 particles at fixed density in dimensiah
=2, interacting through a purely repulsive Weeks-Chandler-
b (x)wi(x) = b;(x) andl;(x)w;(x) = 1;(x), (3) Andersen(WCA) potential. In addition, two of the particles
experience a double well potentidme(r), with r the inter-
particle distance, so that its two minima correspond to the
compact and extended configurations of a dilsee Ref[7]
bi_1(x) = bi(x), for detailg. The barrier height is chosen such that the states
are stable, transitions between them are rare, and the rate
li_1(X) + b_1(X) + [;(X) =wi_1(X) + 1;(X) = [i_1(X) + bj(x) + 1,(X) constants are well defined. We chose 18 interfaces defined by
)+ W) = 1 @) the order parametex=r, the dimer interparticle distance.
i-1 ' : StateA is defined byr <\, and stateB by r > \,-. All system
Using these equations for amy ,\i_; <\’ <\;, and PPTIS numerical parameters are identical to those in
o . , Secs. Il A and 1l B of[7].

P(V) = (8MX) = A1) = (8N x) = M) Wiy () +1i(x)]) We considered two cases, one at constant temperature,
= (SNX) = N)Wi_1 (X)) + (SN (X) = N)(%)) and the other at constant energy. We first calculated the ca-
_ , nonical free energy8F(r)=-InP(r), at T=1/8=0.755, cor-
= Wiy ()N X) =N D, responding to the temperature in our previous free energy

+ (Wi (X)) SONX) = X)) )y (5)  calculation[7]. In Fig. 3 we report the histograms of loop
' and boundary points for two consecutive PPTIS windows,
Here, (A(x))= [dx AX)p(x)/ [dx p(x) denotes the equilib- together with the rescaling and rematching procedures. By
rium ensemble average with(x) the equilibrium distribu- iterating the procedure on all the windows, we computed the

for any phase poink. Moreover, for a phase point with
N1 <A(X) <\, it also holds that
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TABLE |. PPTIS forward and backward rate constakig and

16 Ioop+b0'undary o )

Ho, o sa as well as the equilibrium consta@t=kag/kza. Moreover, in-

Bees k Il as th lib taBt=kap/kga M
12 . ] tegratingP(r) from the free energy curves over the stable regions
window . . . I . S

0.8 /7 T | e | ofinterface i-1 1] we can obtain their relative probabilities and the radjg which is
gall ] another expression of the equilibrium rate. We also re@gyt ob-
ool ) ] tained using the free energies from the biased MC simulations. The
16] loop+boundary results are all consistent with each other.
12t

[ window | e e | ] kAB/ 10_10 kBAllo_lO C CF CMC
081 of interface i BOURGRRE % ]
04t loop NVT  10+4 6+2 1.5+0.8 1.5+0.2 1.419+0.003
ool o : M | NVE 2.9+05 1.9+0.2 1.5+0.3 1.39+0.07 1.423+0.002
B @+(b)+©) | rematching for the |]
12 two windows |]

[ tched ] . . .
osl ?;uﬁdgrigi (O] [— by an independent free energy calculation. Using the con-
0all TN rescaled ] stant temperature biased MC simulation described before, it
~H_~loop (a) e ""'»-'-'99‘3.‘,_9)“»‘ 1 is possible to reweight each canonical configuration to its
00,5 22 24 26 28 30 32 proper microcanonical probability for the unbiased system.

r Let gq,p be thedN-dimensional vectors of all positions and

momenta, respectively. In thBVT ensemble the reduced

FIG_‘ 3. The window rematching procedure. Top and m'dd.leconfigurational distribution for the biased system with total
panels: loop and boundary point histograms for two consecutive

windows of the\,_; ensemblewith \;_,=2.02<r < 2.82=\;) and potential engrgWWCA(q) IS pcar(Q)““eXFi—,BVWCA_(Q)]. In-

the \; ensemble(with \,_;=2.42<r <3.22=\,,,). Bottom: con- stead, the microcanonical probability of the unbiased system
i i- . . i+1)- . .

struction of the corrected histograRir) (thick solid line between ~ that we need is

\i-1 and\;. Repeating this procedure with windows , and \;,

results in the probability histogram over the entire range,

Bt Pricl@) f dp &[H(a,p) ~ E]&(P) < [E - Viyca(a)
free energy betweexy, and\ ¢ The free energy in the stable L
regionsA and B was obtained by directly histogramming = Vaimedr ()] 272, (8)

P(r) by means of two standard MC simulations. To check the
PPTIS result we performed an independent MC free energ
calculation. By applylng a biasing po_tentlal of exactly , the d-dimensional vector of total momentum, and)) is
~Vgimedr) to the dimer system, one can simulate a system o

: . he dimer interparticle distance for a given configuratgpn
pure WCA particles, and obtain the free energy from the . . _ ) .
probability of finding any two particles at distanc¢7]. The Applying the weightomic/ pean for €ach MC configuration we

resulting free energy agrees very well with our PPTIS reoan In a single simulation compute bat/T and NVE av-

sults. as is shown in Fig. 4 erages. As before, in the biased system it does not matter
Pa’\th samplin simulgt.ioris are often performed at consta Vf'hiCh two particles we consider as a dimer and we can in-
piing P . . Crease the statistics averaging over all pairs. We report in

energy. We therefore also performed a PPTIS simulation or&ig_ 4 the NVE free energy profile obtained from the re-

the same system, at constant eneEjy\N=1.0, in order to . : : : :
; weighted biased MC simulation together with BTISone.
compute theNVEfree energy. Again, we checked the resut Finally, the forward and backward rate constants follow

%hereH(q,p) is the Hamiltonian of the unbiased systeR,

T - T T from a PPTIS simulation together with the free energy once

Soggooafon the fluxes in(1) are known[5,7]. For both the canonical and
: microcanonical cases we computed fg using MD trajec-
tories with initial points in the stable states and sampled from
: h the appropriate corresponding distribution. In Table | we re-
"r’;i'f:éﬁf; vl & % port the final rates. The constant energy results compare well

PPTIS g with our previous calculationg/].
PPTIS L

IV. CONCLUSION

FIG. 4. Canonical and microcanonical free energies obtained [N conclusion, we have designed an algorithm that allows
from PPTIS and MC simulations. The errors are within the symbolus to obtain the free energy profile within the PPTIS path
size. The temperature and the energy of the respedtvg and  sampling scheme. It is worth stressing that in traditional
NVE simulations were chosen to give the same average kinetic efmethods, such as the Bennett-Chandler procedure, first the
ergy. Still, the free energy profile on top of the barrier is signifi- free energy is computed and then the rates have to be deter-
cantly different for the two ensembles. mined in a separate simulation. Here, we have shown that a
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