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We introduce a method to evaluate simultaneously the reaction rate constant and the free energy profile of a
process in a complex environment. The method employs the partial path transition interface sampling tech-
nique we recently developed for the calculation of rate constants in diffusive systems. We illustrate the
applicability of the technique by studying a simple dimer in a repulsive fluid, and show that the free energy can
be obtained at no additional computational cost.
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I. INTRODUCTION

The calculation of kinetic informationse.g., rate con-
stantsd of rare-event-dominated processes such as protein
folding, chemical reactions in solution, and crystal nucle-
ation remains, in general, one of the great computational
challenges. Application of straightforward molecular dynam-
ics sMDd would in principle yield all atomistic kinetic infor-
mation. However, MD requires a sufficiently small time step
to describe the elementary molecular motion, while a reac-
tive process usually exceeds this molecular time scale by
many orders of magnitude. As a result, the calculation of
rates using MD is for most systems beyond the reach of
present computers. To enable the study of the kinetics for
processes in which a high free energy barrier separates the
stable states, the Bennett-Chandler methodf1,2g writes the
rate constant as a product of two factors: the equilibrium
probability to be on the barrier, and a kinetic prefactor. The
first factor is given by the free energy difference between the
transition state region and the stable state as a function of a
reaction coordinate. The concept of free energy is to reduce
the myriad degrees of freedom to a single or a set of vari-
ables that are able to describe the reaction process. The nu-
merical computation of free energy profiles or landscapes has
proved invaluable for gaining insight in complex processes,
and many different methods have been developedf3g. For
instance, in the widely used umbrella samplingsUSd tech-
nique one biases the system into the low probabilitysor high
free energyd regions to gain more statisticsf3g. Although US
gives the free energy barrier, it is not sufficient for the rate
constant. Therefore, the second step in the Bennett-Chandler
procedure is the calculation of a dynamical correction factor
called the transmission coefficient by starting many MD tra-
jectories from the top of the barrier. Unfortunately, when the
reaction coordinate fails to capture the molecular mecha-
nism, this procedure becomes very inefficient due to the
small value of the transmission coefficient. Only when the
reaction coordinate is correctly chosensand is therefore con-
sidered as a “true reaction coordinate”d, the phase space re-
gion on top of the barrier corresponds to the transition state
dividing surface and, hence, the transmission coefficient will
have reasonable value that can be computed.

For this reason, Chandler and co-workers developed tran-
sition path samplingsTPSd, a method that obtains the kinet-
ics of a complex rare event process without prior knowledge
of the reaction coordinate, but just using an order parameter
able to distinguish the initial and final statesf4g. TPS gathers
a collection of reactive pathways connecting the initial and
final regions by employing a random walk in trajectory space
based on the Monte CarlosMCd shooting movef4g. Based on
this, we recently developed a more efficient transition inter-
face samplingsTISd methodf5g, which has shown to be a
promising tool for the calculation of rate constants between
two stable states in high dimensional complex systems sepa-
rated by large free energy barriersf6g. For diffusive systems
we also devised a variation of this method, called partial path
TIS sPPTISd f7g, effectively exploiting the loss of long time
correlation. In PPTIS the paths do not have to go all the way
to the initial or final state, thus greatly improving efficiency.

TIS and PPTIS no longer use the free energy, but the
crossing probability function whose calculation is much less
sensitive to the problem of the right reaction coordinate
f5,7g. However, for the analysis of complex and diffusive
processes, e.g., conformational changes of biomolecules, it
could be useful to have, besides the crossing probabilities
and the rate constants, also the free energy profile along or-
der parameters, for instance to identify metastable states and
bottlenecks in the mechanism.

In this article we show how to obtain the free energy
landscapetogether withthe rate constants in one single simu-
lation series using PPTIS concepts.

II. THEORY

Consider a complex system which undergoes a transition
between two stable statesA andB, separated by a high bar-
rier, but with a reasonably flat and broad plateau. Due to the
height of the barrier the population on top will be very small,
yielding exponential two-state behavior and a well defined
rate constant. In addition, as this barrier in not sharply
peaked, but has this broad plateau, the transitions will have a
strong diffusive character and it is therefore often referred to
as a diffusive barrier. The PPTIS method requires a set of
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n+1 nonintersecting multidimensional interfacesh0,1,… ,nj
described by an order parameterlsxd function of the system
phase pointx, i.e., of all positions and velocities. This order
parameter should be able to describe the stable states, but
does not have to correspond to the true reaction coordinate
or, equivalently, none of the surfaces have to be close to the
true transition dividing surface.

We chooseli, i =0,… ,n, such thatli−1,li, and that the
boundaries of statesA and B are described byl0 and ln,
respectively. Now consider a deterministic Hamiltonian tra-
jectory xt of arbitrary length, wherext is the complete phase
space vector at a timet. We define the conditional crossing
probability Ps l

mu i
j
d as the probability for a trajectoryxt to

reach interfacel beforem under the condition that it crosses
at t=0 interfacei, while coming directly from interfacej in
the past. Directly means without crossing interfacei another
time ssee Fig. 1d. These probabilitiesPs l

mu i
j
d are defined on

any set of four interfaces. Of special interest are the so-called
long distance crossing probabilitiesPi

+; Ps i
0u 1

0
d and Pi

−

; Ps 0
i u

i−1
i

d. The forward and backward rate constants of theA
to B transition can be written as

kAB = fAPn
+, kBA = fBPn

−, s1d

where we assumed that once the system has switched to the
other state, the chance of recrossing has vanished. The fac-
tors fA and fB are the fluxes out ofA andB, respectively, and
can be calculated accurately by counting the frequency of
leavingA andB using straightforward MD. The other factors
Pn

+ andPn
− can be calculated in a TIS simulation. However, in

case there is memory loss between the interfaces, we can
approximate the long distance crossing probabilities by the
recursive relations

Pj
+ <

pj−1
± Pj−1

+

pj−1
± + pj−1

= Pj−1
− , Pj

− <
pj−1

7 Pj−1
−
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− , s2d

in which the one-interface-crossing probabilities are defined
as pi

± ; Ps i+1
i−1u i

i−1
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i+1u i

i+1
d, pi

=; Ps i−1
i+1u i
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i+1
d. Starting withP1

+=P1
−=1, we can iteratively de-

terminesPj
+,Pj

−d for j =2,… ,n. The one-hopping probabili-
ties are calculated employing the shooting algorithmf4g. Be-
cause of the memory loss assumption, the PPTIS expression
essentially transforms the rate equation into a Markovian
hopping sequence. Yet, if the dynamics is diffusive and the
interfaces are sufficient far apart, the recursive expressions2d
is an excellent approximationf7g. A similar method to PPTIS
is the milestoningmethod of Faradjian and Elberf8g. The
two methods are very similar, but differ on two crucial
points. The milestoning method assumes a complete loss of
memory at each interface. Hence, at each interface the sys-
tem can hop either to the right or to the left with a certain
probability and these probabilities do not depend on the his-
tory of the path. PPTIS takes a stronger history dependence
into account. At each interface memory effects may persist
but not much longer than the time needed to travel from one
interface to the other. Recent PPTIS calculations on crystal
nucleation have shown that this stronger history dependence
is probably important for realistic systemsf9g. On the other
hand, the milestoning approach puts more effort into describ-
ing the time evolution on the barrier by using time dependent
hopping probabilities. These are required if one wants to
study, for instance, the decay of a distribution that is initially
out of equilibrium, or the diffusion behavior on the barrier.
This time aspect introduces another history dependencef8g,
which is absent in PPTIS where the final crossing probability
is a quantity independent of time. This is justified by the fact
that PPTIS always assumes that the barrier is sparsely popu-
lated. Hence, the time that the system spends on the barrier
can be long from a computational perspective, but is still
negligible compared to the expected time the system needs to
enter the barrier plateau region from one of the stable states.
In principle, this condition should always be satisfied for a
system that shows exponential decay and, hence, has a well
defined rate, but, of course, systems that do not obey these
conditions can still be interesting to study. To summarize,
both methods are very similar, but each one is more accurate
in one of the points described above. However, the two as-
pects do not exclude each other and could easily be merged
into a single algorithm if needed.

In addition to the rate constant, it is also possible to obtain
the equilibrium free energy profiles alongl. For that we
need to calculate the probabilityPsld to find the system at a
certain value ofl. In principle, if we perform path sampling
between two interfaces, and allow the path to be completely
free, but stop integrating when an interface is hit, we essen-
tially perform umbrella sampling between the interfaces us-
ing hybrid MC methodsf10g. In that case, simply measuring
the probability along the paths to be at a value ofl and
joining all histograms would suffice to obtain the entire free
energy bFsld;−ln Psld. The PPTIS ensembles have a
strong resemblance to US where the interfaces act as hard
window boundaries. However, the PPTIS method introduces
a bias, by restricting all paths in the ensemble to cross the
middle interface. Theli path ensemble in the PPTIS formal-
ism consists of all possible paths that start and end at either
li−1 or li+1 and have at least one crossing withli. Similar to
TPSf4g, we consider a path as a time-discretized sequence of

FIG. 1. Illustration of the conditional crossing probability
Ps l

mu i
j
d for a certain configuration of interfacesli ,l j ,ll, and lm

along a free energy barrier. The conditionu i
j d restricts the set of

phase points to those that cross interfaceli in one time stepsin the
limit dt→0 this corresponds to a collection of phase points on the

surfaceli, but with a weight proportional tol̇d and its backward
trajectory should crossl j beforeli. In this picture only the black
solid circles satisfy this condition. The forward evolution is associ-
ated with s l

mu and measures whether interfacell is crossed before
lm sas in the upper pathd or not sas in the lower oned. The fraction
that crossesll beforelm yields Ps l

mu i
j
d.
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phase points, called time slices. The collection of all time
slices of these paths is a subset of the phase space points
confined betweenli−1 and li+1 because we are missing the
points around the outer interfaces, as shown in Fig. 2. We
can correct for this by comparing neighboring interface en-
sembles. For this purpose, it is convenient to categorize the
time slices into theloop type andboundary type of phase
points as illustrated in Fig. 2. We definehi,j

fsbdsxd to be 1
if the forward sbackwardd deterministic trajectory starting
from phase space pointx meetsli before l j and 0 other-
wise. We can now define the loop and boundary characteris-
tic functions as l isxd=hi,i−1

f sxdhi,i+1
f sxdhi,i−1

b sxdhi,i+1
b sxd

and bisxd=hi−1,i
f sxdhi,i−1

b sxd+hi−1,i
b sxdhi,i−1

f sxd+hi+1,i
f sxdhi,i+1

b sxd
+hi+1,i

b sxdhi,i+1
f sxd. Again, these functions are either one or

zero depending on whetherx belongs to its loop or boundary
category. Similarly, the complete set of time slices in the
PPTIS ensemble can be characterized bywisxd= l isxd+bisxd.
This function is one, when the phase belongs to a path in the
PPTISli ensemble. Otherwise it is zero. Asbi and l i vanish
wheneverwi is zero,

bisxdwisxd = bisxd and l isxdwisxd = l isxd, s3d

for any phase pointx. Moreover, for a phase point with
li−1,lsxd,li it also holds that

bi−1sxd = bisxd,

l i−1sxd + bi−1sxd + l isxd = wi−1sxd + l isxd = l i−1sxd + bisxd + l isxd

= l i−1sxd + wisxd = 1. s4d

Using these equations for anyl8 ,li−1,l8,li,

Psl8d = kd„lsxd − l8…l = kd„lsxd − l8…fwi−1sxd + l isxdgl

= kd„lsxd − l8…wi−1sxdl + kd„lsxd − l8…l isxdl

= kwi−1sxdlkd„lsxd − l8…lwi−1

+ kwisxdlkd„lsxd − l8…l isxdlwi
, s5d

Here, kAsxdl;edx Asxdrsxd /edx rsxd denotes the equilib-
rium ensemble average withrsxd the equilibrium distribu-

tion. The subscript denotes a conditional ensemble average
and is defined askAsxdlv;edx Asxdvsxdrsxd /edx vsxdrsxd.
The termkdslsxd−l8dlwi−1

can be calculated by histogram-
ming all time slices of the paths generated by the PPTIS
algorithm in the interfacei −1 ensemble. Similarly,kdslsxd
−l8dl ilwi

can be obtained by histogramming the loop points
of the trajectories in the ensemble of interfacei. The remain-
ing terms are computed by matching different histograms
using scaling factors obtained from the overlapping regions
between two windows. These scaling factors are here defined
as si ;kwisxdl / kwi−1sxdl and follow, using Eqs.s3d and s4d,
from

si =
kd„lsxd − l8…bi−1lwi−1

kd„lsxd − l8…bilwi

, s6d

for anyl8 ,li−1,l8,li. Hence, one can integrate overl8 to
obtain the most accurate value ofsi.

Using these scaling factorss6d and Eq.s5d one can derive
the following relation for the relative probability of the order
parameter valuesa and b with li−1,a,li and li ,b
,li+1:

Psad
Psbd

=
si

−1kd„lsxd − a…lwi−1
+ kd„lsxd − a…l ilwi

kd„lsxd − b…lwi
+ si+1kd„lsxd − b…l i+1lwi+1

. s7d

Hence, when all scaling factorssi are known the total histo-
gramPsld can be computed by joining all probabilities from
Eq. s7d. Note that contrary to the rate calculation, the ob-
tained free energy profile does not depend on the Markovian
assumption introduced by PPTIS. Hence, this result is al-
ways exact, even when the memory loss requirement is not
completely obeyed.

III. NUMERICAL RESULTS

We test the validity of the method on the dimer system
already studied with TPS and TIS techniquesf5,7,11g. We
considerN=100 particles at fixed density in dimensiond
=2, interacting through a purely repulsive Weeks-Chandler-
AndersensWCAd potential. In addition, two of the particles
experience a double well potentialVdimersrd, with r the inter-
particle distance, so that its two minima correspond to the
compact and extended configurations of a dimerssee Ref.f7g
for detailsd. The barrier height is chosen such that the states
are stable, transitions between them are rare, and the rate
constants are well defined. We chose 18 interfaces defined by
the order parameterl=r, the dimer interparticle distance.
StateA is defined byr ,l0 and stateB by r .l17. All system
and PPTIS numerical parameters are identical to those in
Secs. III A and III B off7g.

We considered two cases, one at constant temperature,
and the other at constant energy. We first calculated the ca-
nonical free energybFsrd=−ln Psrd, at T=1/b=0.755, cor-
responding to the temperature in our previous free energy
calculationf7g. In Fig. 3 we report the histograms of loop
and boundary points for two consecutive PPTIS windows,
together with the rescaling and rematching procedures. By
iterating the procedure on all the windows, we computed the

FIG. 2. Illustration of loop and boundary points. The open
circles denote boundary points withbisxd=1, time slices that hit a
boundary in one time direction and reachli in the opposite time
direction. The loop pointssfull circlesd with l isxd=1 meet first the
middle interface in both directions. For both loop and boundary
pointswisxd=1. The dashed lines are paths that do not belong to the
ensemble as they do not crossli. Hence, the corresponding time
slicesscrossesd are not part of the subset of phase points counted in
the li ensemblefthus wisxd=0g, but are loop points of the neigh-
boring interfaces.
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free energy betweenl1 andl16. The free energy in the stable
regions A and B was obtained by directly histogramming
Psrd by means of two standard MC simulations. To check the
PPTIS result we performed an independent MC free energy
calculation. By applying a biasing potential of exactly
−Vdimersrd to the dimer system, one can simulate a system of
pure WCA particles, and obtain the free energy from the
probability of finding any two particles at distancer f7g. The
resulting free energy agrees very well with our PPTIS re-
sults, as is shown in Fig. 4.

Path sampling simulations are often performed at constant
energy. We therefore also performed a PPTIS simulation on
the same system, at constant energyE/N=1.0, in order to
compute theNVE free energy. Again, we checked the result

by an independent free energy calculation. Using the con-
stant temperature biased MC simulation described before, it
is possible to reweight each canonical configuration to its
proper microcanonical probability for the unbiased system.
Let q,p be thedN-dimensional vectors of all positions and
momenta, respectively. In theNVT ensemble the reduced
configurational distribution for the biased system with total
potential energyVWCAsqd is rcansqd~expf−bVWCAsqdg. In-
stead, the microcanonical probability of the unbiased system
that we need is

rmicsqd ~E dp dfHsq,pd − EgdsPd ~ fE − VWCAsqd

− Vdimer„rsqd…gsdN−d−2d/2, s8d

whereHsq,pd is the Hamiltonian of the unbiased system,P
is the d-dimensional vector of total momentum, andrsqd is
the dimer interparticle distance for a given configurationq.
Applying the weightrmic/rcan for each MC configuration we
can in a single simulation compute bothNVT and NVE av-
erages. As before, in the biased system it does not matter
which two particles we consider as a dimer and we can in-
crease the statistics averaging over all pairs. We report in
Fig. 4 the NVE free energy profile obtained from the re-
weighted biased MC simulation together with thePPTISone.

Finally, the forward and backward rate constants follow
from a PPTIS simulation together with the free energy once
the fluxes ins1d are knownf5,7g. For both the canonical and
microcanonical cases we computedfA, fB using MD trajec-
tories with initial points in the stable states and sampled from
the appropriate corresponding distribution. In Table I we re-
port the final rates. The constant energy results compare well
with our previous calculationsf7g.

IV. CONCLUSION

In conclusion, we have designed an algorithm that allows
us to obtain the free energy profile within the PPTIS path
sampling scheme. It is worth stressing that in traditional
methods, such as the Bennett-Chandler procedure, first the
free energy is computed and then the rates have to be deter-
mined in a separate simulation. Here, we have shown that a

FIG. 3. The window rematching procedure. Top and middle
panels: loop and boundary point histograms for two consecutive
windows of theli−1 ensembleswith li−2=2.02, r ,2.82=lid and
the li ensembleswith li−1=2.42, r ,3.22=li+1d. Bottom: con-
struction of the corrected histogramPsrd sthick solid lined between
li−1 and li. Repeating this procedure with windowsli−2 and li+1

results in the probability histogram over the entire rangeli−2

=2.02, r ,3.22=li+1.

FIG. 4. Canonical and microcanonical free energies obtained
from PPTIS and MC simulations. The errors are within the symbol
size. The temperature and the energy of the respectiveNVT and
NVE simulations were chosen to give the same average kinetic en-
ergy. Still, the free energy profile on top of the barrier is signifi-
cantly different for the two ensembles.

TABLE I. PPTIS forward and backward rate constantskAB and
kBA, as well as the equilibrium constantC=kAB/kBA. Moreover, in-
tegratingPsrd from the free energy curves over the stable regions
we can obtain their relative probabilities and the ratioCF, which is
another expression of the equilibrium rate. We also reportCMC ob-
tained using the free energies from the biased MC simulations. The
results are all consistent with each other.

kAB/10−10 kBA/10−10 C CF CMC

NVT 10±4 6±2 1.5±0.8 1.5±0.2 1.419±0.003

NVE 2.9±0.5 1.9±0.2 1.5±0.3 1.39±0.07 1.423±0.002
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method developed for rate computations also gives the free
energy as a side product, with no additional computational
effort. We believe that the loop-boundary method has many
applications, e.g., in biomolecular simulations, where the
calculation of free energy profiles is often done by means of
MD, thus making the transition to PPTIS rather straightfor-
ward.

ACKNOWLEDGMENTS

We thank P. R. ten Wolde for a careful reading of the
manuscript. T.S.v.E acknowledges the support of the Marie
Curie FoundationsGrant No. MEIF-CT-2003-501976d within
the Sixth European Community Framework Programme.

f1g C. H. Bennett, inAlgorithms for Chemical Computations, ed-
ited by R. Christofferson, ACS Symposium Series No. 46
sAmerican Chemical Society, Washington, DC, 1977d.

f2g D. Chandler, J. Chem. Phys.68, 2959s1978d.
f3g D. Frenkel and B. Smit,Understanding Molecular Simulation,

2nd ed.sAcademic Press, San Diego, CA, 2002d.
f4g C. Dellago, P. G. Bolhuis, and P. L. Geissler, Adv. Chem.

Phys. 123, 1 s2002d.
f5g T. S. van Erp, D. Moroni, and P. G. Bolhuis, J. Chem. Phys.

118, 7762s2003d.
f6g P. G. Bolhuis, Proc. Natl. Acad. Sci. U.S.A.100, 12129

s2003d.
f7g D. Moroni, P. G. Bolhuis, and T. S. van Erp, J. Chem. Phys.

120, 4055s2004d.
f8g A. K. Faradjian and R. Elber, J. Chem. Phys.120, 10880

s2004d.
f9g D. Moroni, Ph.D. thesis, University of Amsterdam, 2005.

f10g S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth,
Phys. Lett. B195, 216 s1987d.

f11g C. Dellago, P. G. Bolhuis, and D. Chandler, J. Chem. Phys.
110, 6617s1999d.

SIMULTANEOUS COMPUTATION OF FREE ENERGIES… PHYSICAL REVIEW E 71, 056709s2005d

056709-5


